You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 November 2003Synthetic aperture ladar for planetary sensing
Synthetic Aperture Ladar (SAL) could provide high resolution optical/infrared imaging of planetary surfaces from airborne or spaceborne platforms, using only modest-sized optics feasible for high-altitude flight or orbital missions. We discuss the characteristics of a planetary observing SAL (range and azimuth resolutions, field of regard, imaging swath size, altitude, aperture size, laser power, wavelength, etc.) and model the imaging performance of a SAL. Required laser power grows exponentially with range from the sensor platform ground track, due to atmospheric extinction, and also depends on wavelength as λ-1 for a shot-noise-limited receiver. Planetary observing by SAL from space may be feasible in the terahertz band (~ 100 μm) with ~10 W of laser power. A planetary-observing SAL at shorter wavelengths (e.g. 1-2 μm) would require correspondingly higher laser power and would be much more challenging. SAL imaging may be attractive from low orbit around other planets, in particular those with little or no atmosphere (e.g Mars, Mercury, the Moon and many other planetary satellites). Beam stabilization, motion compensation and autofocus are among the most challenging aspects of a SAL mission.
The alert did not successfully save. Please try again later.
Thomas J. Karr, "Synthetic aperture ladar for planetary sensing," Proc. SPIE 5151, Earth Observing Systems VIII, (10 November 2003); https://doi.org/10.1117/12.505723