13 November 2003 Gabor multipliers with varying lattices
Author Affiliations +
Abstract
In the early days of Gabor analysis it was a common to say that Gabor expansions of signals are interesting due to the natural interpretation of Gabor coefficients, but unfortunately the computation of Gabor coefficients is costly. Nowadays a large variety of efficient numerical algorithms exists and it has been recognized that stable and robust Gabor expansions can be achieved at low redundancy, e.g., by using a Gaussian atom and any time-frequency lattice of the form (see formula in paper). Consequently Gabor multipliers, i.e., linear operators obtained by applying a pointwise multiplication of the Gabor coefficients, become an important class of time-variant filters. It is the purpose of this paper to describe that fact that - provided one uses Gabor atoms from a suitable subspace (formula in paper)one has the expected continuous dependence of Gabor multipliers on the ingredients. In particular, we will provide new results which show that a small change of lattice parameters implies only a small change of the corresponding Gabor multiplier (e.g., in the Hilbert-Schmidt norm).
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hans Georg Feichtinger, "Gabor multipliers with varying lattices", Proc. SPIE 5207, Wavelets: Applications in Signal and Image Processing X, (13 November 2003); doi: 10.1117/12.507648; https://doi.org/10.1117/12.507648
PROCEEDINGS
12 PAGES


SHARE
RELATED CONTENT

Stable signal recovery from the roots of the short time...
Proceedings of SPIE (September 27 2011)
Inexpensive Gabor decompositions
Proceedings of SPIE (October 11 1994)
Time-frequency multipliers for sound synthesis
Proceedings of SPIE (September 20 2007)
Cross Hilbert time-frequency distributions
Proceedings of SPIE (October 02 1998)

Back to Top