You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 January 2004Standards-compatible compression for automated image recognition in sensor networks and surveillance systems
We show that the standard image compression algorithms are not suitable for compressing images in correlation pattern recognition since they aim at retaining image fidelity in terms of perceptual quality rather than preserving spectrally significant information for pattern recognition. New compression algorithms for pattern recognition are therefore developed, which are based on the modification of the standard compression algorithms to achieve higher
compression ratio and simultaneously to enhance pattern recognition performance. This is done by emphasizing middle and high frequency components and discarding low frequency components according to a new developed distortion measure for compression. The operations of denoising, edge enhancement and compression can be integrated in the encoding process in the proposed compression algorithms. Simulation results show the effectiveness of the proposed compression algorithms.
Mo Chen,Mark L. Fowler, andShuqun Zhang
"Standards-compatible compression for automated image recognition in sensor networks and surveillance systems", Proc. SPIE 5208, Mathematics of Data/Image Coding, Compression, and Encryption VI, with Applications, (28 January 2004); https://doi.org/10.1117/12.505276
The alert did not successfully save. Please try again later.
Mo Chen, Mark L. Fowler, Shuqun Zhang, "Standards-compatible compression for automated image recognition in sensor networks and surveillance systems," Proc. SPIE 5208, Mathematics of Data/Image Coding, Compression, and Encryption VI, with Applications, (28 January 2004); https://doi.org/10.1117/12.505276