You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 September 2003Beam characterization of commercial red and infrared diode lasers
Commercial available red and infrared diode lasers have been tested. A set of ten pieces of red 25 mW nominal output power and five pieces of 0.5 W infrared diode lasers have been investigated. The laser output power has been measured by using an Ophyr power-meter. Ophyr F150 head (3mW noise) was used for power measurements of the infrared diode laser and Ophyr 3A-IS integrated sphere was used in the case of red diode lasers. A Spiricon laser beam analyzer was used to determine the beam intensity distribution. An API wave-check wavelength meter measures the wavelength of the diode lasers. Temporal behavior of the diode lasers over periods of days was recorded. The influence of ambiental conditions is considered. Our study guarantees the proper choice of the diode laser to be used in specific applications such as medical, and industrial applications.
Dan G. Sporea andMircea V. Udrea
"Beam characterization of commercial red and infrared diode lasers", Proc. SPIE 5227, Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies, (30 September 2003); https://doi.org/10.1117/12.519898
The alert did not successfully save. Please try again later.
Dan G. Sporea, Mircea V. Udrea, "Beam characterization of commercial red and infrared diode lasers," Proc. SPIE 5227, Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies, (30 September 2003); https://doi.org/10.1117/12.519898