Translator Disclaimer
Paper
12 December 2003 Electron acceleration in high-amplitude surface plasma waves excited by ultrashort laser
Author Affiliations +
Proceedings Volume 5228, ECLIM 2002: 27th European Conference on Laser Interaction with Matter; (2003) https://doi.org/10.1117/12.536910
Event: ECLIM 2002: 27th European conference on Laser Interaction with Matter, 2002, Moscow, Russian Federation
Abstract
We have investigated a new mechanism for creation of relativistic electrons via the acceleration by the resonant field of laser excited surface plasma waves in sharp-edged overdense plasmas. This mechanism consists in a generalization to high-intensity laser fields of an effect recently observed in the context of short-pulse laser metal interaction. As it is well known, a p-polarized laser impinging onto a structured metal surface creates a plasma during the rise time of the laser pulse, which can reach temperatures of several hundreds of eV. If the pulse duration (<~ 100 fs) is such that the interaction of the electrons with the surface plasma wave occurs before the hydrodynamic expansion has time to smooth the plasma density sharp edge, the conditions for resonant excitation of surface plasma waves by the laser can be fulfilled. We show that in this case the strongly inhomogeneous enhanced electric field located near the plasma surface may accelerate the electrons toward the vacuum, the efficiency of this mechanism depending on the ratio RL between two characteristic lengths: the extension length of the surface wave field in the vacuum and the typical distance covered by the particles in the high-frequency high-amplitude field. We find an optimum regime for RL of the order of unity, in which case the electrons can be accelerated up to a momentum of the order of magnitude of the high-frequency momentum posc in the enhanced field of the surface plasma wave. The results of a 1D relativistic test-particle simulation modeling the interaction of the electrons with the plasma wave field are presented. In particular, we show that electron energies of some MeV may be reached for laser intensities of the order of 1018W/cm2. The resulting electron energy distribution function is numerically calculated for the optimum case. The spectrum shows a well-defined peaked structure due to the dependence on the phase of the plasma wave field experienced by the accelerated electrons. This study suggests a novel possibility of high-current energetic pulsed electron sources.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
J. Kupersztych, M. Raynaud, and C. Riconda "Electron acceleration in high-amplitude surface plasma waves excited by ultrashort laser", Proc. SPIE 5228, ECLIM 2002: 27th European Conference on Laser Interaction with Matter, (12 December 2003); https://doi.org/10.1117/12.536910
PROCEEDINGS
6 PAGES


SHARE
Advertisement
Advertisement
Back to Top