You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 September 2003Automatic calibration and neural networks for robot guidance
An autonomous robot must be able to sense its environment and react appropriately in a variable environment. The University of Cincinnati Robot team is actively involved in building a small, unmanned, autonomously guided vehicle for the International Ground Robotics Contest organized by Association for Unmanned Vehicle Systems International (AUVSI) each year. The unmanned vehicle is supposed to follow an obstacle course bounded by two white/yellow lines,
which are four inches thick and 10 feet apart. The navigation system for one of the University of Cincinnati’s designs, Bearcat, uses 2 CCD cameras and an image-tracking device for the front end processing of the image captured by the cameras. The three dimensional world co-ordinates were reduced to two dimensional image coordinates as a result of the transformations taking place from the ground plane to the image plane. A novel automatic calibration system was designed to transform the image co-ordinates back to world co-ordinates for navigation purposes. The purpose of this paper is to simplify this tedious calibration using an artificial neural network. Image processing is used to automatically detect calibration points. Then a back projection neural algorithm is used to learn the relationships between the image coordinates and three-dimensional coordinates. This transformation is the main focus of this study. Using these
algorithms, the robot built with this design is able to track and follow the lines successfully.
The alert did not successfully save. Please try again later.
Balaji Sethuramasamyraja, Masoud Ghaffari, Ernest L. Hall, "Automatic calibration and neural networks for robot guidance," Proc. SPIE 5267, Intelligent Robots and Computer Vision XXI: Algorithms, Techniques, and Active Vision, (30 September 2003); https://doi.org/10.1117/12.515036