You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 March 2004Optimization techniques for plasma etching of thermoset polymer for microfluidic channels
A technique is presented for fabricating microchannels for flow investigation with fluorescent particles. The channels were fabricated using plasma etching of a thermoset polymer film, UV15 from Master Bond. The UV15 was spun on a silicon wafer to give a depth of 100μm. A 100nm thick patterned aluminium film was sputtered and patterned on the polymer surface for the etch pattern mask. Sputtering conditions were optimised to prevent damage to the polymer layer. Etch depths to 100μm were obtained. Curing conditions were optimised to prevent wrinkling of the Al/polymer surface during etching. There is a wide variation in the polymer etch rate which can be attributed to many factors. However, one of the most significant is the energy dose (mW/cm2) to cure the polymer. For etch depths greater than 20μm the channels varied from the rectangular cross section shape by undercutting on the walls and deeper etching at the bottom of the channel walls. Conditions for obtaining uniform microchannels for 100μm wide and 50μm deep channels, 5cm long are presented.
The alert did not successfully save. Please try again later.
Carla Victoria Cher, Anthony Stephen Holland, Gary Rosengarten, "Optimization techniques for plasma etching of thermoset polymer for microfluidic channels," Proc. SPIE 5275, BioMEMS and Nanotechnology, (29 March 2004); https://doi.org/10.1117/12.522808