You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 April 2004A comparison of two multilayer microcoil fabrication techniques
The use of magnetic actuators at the microscale has so far been limited when compared with the alternative electrostatic approach. This is mainly due to the fabrication difficulties encountered when producing magnetic components at the microscale. However, the force available from a magnetic actuator far exceeds that of its electrostatic counterpart for a given footprint area, as the magnetic devices have a greater potential to be fabricated into the third dimension. The ability to create multiple layer microcoils, easily and reproducibly, would greatly exploit this fact, enabling devices to be constructed that can produce actuation forces/distances far in excess of any other currently available microtechnology. To this end, the fabrication of two types of multiple layer coil has been investigated, both based around the ultra-thick negative photoresist, SU-8. Single, double and quadruple layer coils have been fabricated in electroplated copper and a commercially available silver colloidal paint. The fabrication times and processing steps have been assessed for each, together with the respective conductivities and the maximum current densities, before burnout of the conductors. The thermal implications of stacked multi layered coils have also been assessed. The coils fabricated have a diameter of 0.93mm.
The alert did not successfully save. Please try again later.
Andrew C. Hartley, Robert E. Miles, Jasmin Corda, "A comparison of two multilayer microcoil fabrication techniques," Proc. SPIE 5276, Device and Process Technologies for MEMS, Microelectronics, and Photonics III, (2 April 2004); https://doi.org/10.1117/12.522929