Translator Disclaimer
1 July 2004 Structural and functional imaging of engineered tissue development using an integrated OCT and multiphoton microscope
Author Affiliations +
Abstract
Recent advances in the field of tissue engineering have led to the development of complex three-dimensional tissue constructs. It has become clear, however, that the traditional tools used for studying standard cell cultures are not always adequate for diagnostically studying thick, highly-scattering cultured tissues. Furthermore, many techniques used for studying three-dimensional constructs are invasive or require exogenous fluorophores, which damage the tissue and prevent time-course studies of tissue development. An integrated optical coherence tomography (OCT) and multi-photon microscope (MPM) has been constructed for visualizing 3-D engineered tissues. OCT was used for imaging structure and cell organization, while MPM was used for assessing functional properties of cells. We demonstrate technical developments involved in the construction of this instrument and its use in the non-destructive investigation of cell movement and tissue organization in engineered tissues. Cells labeled with GFP and exogenous fluorescent probes have also been imaged with OCT and confocal microscopy. Studies indicate that an integrated microscope has the potential to be an enabling diagnostic tool for future studies in the growth and organization of engineering tissues and in cell-cell and cell-matrix interactions.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Lester J. Fahrner IV, Wei Tan, Claudio Vinegoni, Thomas E. Eurell, and Stephen A. Boppart M.D. "Structural and functional imaging of engineered tissue development using an integrated OCT and multiphoton microscope", Proc. SPIE 5319, Laser Interaction with Tissue and Cells XV, (1 July 2004); https://doi.org/10.1117/12.528328
PROCEEDINGS
10 PAGES


SHARE
Advertisement
Advertisement
Back to Top