Paper
1 July 2004 Raman spectroscopy of Alzheimer's diseased tissue
Caroline D. Sudworth, Neville Krasner M.D.
Author Affiliations +
Abstract
Alzheimer's disease is one of the most common forms of dementia, and causes steady memory loss and mental regression. It is also accompanied by severe atrophy of the brain. However, the pathological biomarkers of the disease can only be confirmed and examined upon the death of the patient. A commercial (Renishaw PLC, UK) Raman system with an 830 nm NIR diode laser was used to analyse brain samples, which were flash frozen at post-mortem. Ethical approval was sought for these samples. The Alzheimer's diseased samples contained a number of biomarkers, including neuritic plaques and tangles. The Raman spectra were examined by order to differentiate between normal and Alzheimer's diseased brain tissues. Preliminary results indicate that Alzheimer's diseased tissues can be differentiated from control tissues using Raman spectroscopy. The Raman spectra differ in terms of peak intensity, and the presence of a stronger amide I band in the 1667 cm-1 region which occurs more prominently in the Alzheimer's diseased tissue. These preliminary results indicate that the beta-amyloid protein originating from neuritic plaques can be identified with Raman spectroscopy.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Caroline D. Sudworth and Neville Krasner M.D. "Raman spectroscopy of Alzheimer's diseased tissue", Proc. SPIE 5321, Biomedical Vibrational Spectroscopy and Biohazard Detection Technologies, (1 July 2004); https://doi.org/10.1117/12.552869
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Raman spectroscopy

Tissues

Alzheimer's disease

Brain

Proteins

Microscopes

Semiconductor lasers

Back to Top