14 June 2004 Bioluminescent bioreporter sensing of foodborne toxins
Author Affiliations +
Abstract
Histamine is the primary etiological agent in the foodborne disease scombrotoxicosis, one of the most common food toxicities related to fish consumption. Procedures for detecting histamine in fish products are available, but are often too expensive or too complex for routine use. As an alternative, a bacterial bioluminescent bioreporter has been constructed to develop a biosensor system that autonomously responds to low levels of histamine. The bioreporter contains a promoterless Photorhabdus luminescens lux operon (luxCDABE) fused with the Vibrio anguillarum angR regulatory gene promoter of the anguibactin biosynthetic operon. The bioreporter emitted 1.46 times more bioluminescence than background, 30 minutes after the addition of 100mM histamine. However, specificity was not optimal, as this biosensor generated significant bioluminescence in the presence of L-proline and L-histidine. As a means towards improving histamine specificity, the promoter region of a histamine oxidase gene from Arthrobacter globiformis was cloned upstream of the promotorless lux operon from Photorhabdus luminescens. This recently constructed whole-cell, lux-based bioluminescent bioreporter is currently being tested for optimal performance in the presence of histamine in order to provide a rapid, simple, and inexpensive model sensor for the detection of foodborne toxins.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Amanda C. Fraley, Steven Ripp, Gary S. Sayler, "Bioluminescent bioreporter sensing of foodborne toxins", Proc. SPIE 5329, Genetically Engineered and Optical Probes for Biomedical Applications II, (14 June 2004); doi: 10.1117/12.529272; https://doi.org/10.1117/12.529272
PROCEEDINGS
5 PAGES


SHARE
Back to Top