You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 July 2004Assembling quantum dots in glasses and polymers
This paper is an overview of research in my group over the past 10 to 15 years. Our work has explored the synthesis, assembly, nanostructure characterization, and optical properties of a wide variety of semiconductor quantum dots in II-VI, III-V, and other systems. Our early work was aimed at applications in photonics and fiber optics but more recently we have worked on biomolecular engineering with quantum dots for immunoassays and related interests. The chosen hosts for the quantum dots are glasses, polymers and sol-gel prepared xerogels. The synthesized quantum dot nanocomposites have been most commonly characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), and high resolution transmission electron microscopy (HRTEM). Absorption and photoluminescence (PL) spectroscopy data are also reported on selected quantum dot samples. A short summary of ongoing research in our laboratory on magnetic iron oxide nanocrystals for biological applications is also presented.
The alert did not successfully save. Please try again later.
Subhash H. Risbud, "Assembling quantum dots in glasses and polymers," Proc. SPIE 5359, Quantum Sensing and Nanophotonic Devices, (6 July 2004); https://doi.org/10.1117/12.517514