You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 April 2004Subject-specific modeling of intracranial aneurysms
Characterization of the blood flow patterns in cerebral aneurysms is important to explore possible correlations between the hemodynamics conditions and the morphology, location, type and risk of rupture of intracranial aneurysms. For this purpose, realistic patient-specific models are constructed from computed tomography angiography and 3D rotational angiography image data. Visualizations of the distribution of hemodynamics forces on the aneurysm walls as well as the intra-aneurysmal flow patterns are presented for a number of cerebral aneurysms of different sizes, types and locations. The numerical models indicate that there are different classes of intra-aneurysmal flow patterns, that may carry different risks of rupture.
The alert did not successfully save. Please try again later.
Juan Raul Cebral, Monica Hernandez, Alejandro Frangi, Christopher Putman, Richard Pergolizzi, James Burgess, "Subject-specific modeling of intracranial aneurysms," Proc. SPIE 5369, Medical Imaging 2004: Physiology, Function, and Structure from Medical Images, (30 April 2004); https://doi.org/10.1117/12.535441