You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 May 2004Integrated OPC approach to line-end shortening effects on the photomask and silicon levels for ArF attenuated PSM lithography
Line end shortening (LES) effects and their corrections for ArF attenuated phase shift mask (PSM) technology toward 65 nm node, both in photomask and wafer processes, have been investigated. From critical dimension (CD) measurements on photomasks, it was found that line end distance and line width are the relevant factors for line end deviations on clear field and dark field types, respectively. We confirmed that these mask errors can significantly be reduced by rule base process proximity effect correction (PPC). Subsequently we analyzed resist LES on wafers and found that resist LES shows a down slope in case line end distance is less than 200 nm. We also assessed mask error enhancement factor (MEEF) around line end. Line end MEEF for a clear field mask indicates 3.4 when line end distance is 80 nm. By examining the relation between line end rounding on photomask and corresponding resist LES, we confirmed line end area loss on photomask surely induced larger resist LES. Lastly, we have evaluated a new optical proximity effect correction (OPC) approach in which correction for mask errors is separated from wafer OPC calculation. It is confirmed that new integrated OPC is promising for improving LES.
The alert did not successfully save. Please try again later.
Shunichiro Sato, Ken Ozawa, Mikio Katsumata, Hidetoshi Ohnuma, "Integrated OPC approach to line-end shortening effects on the photomask and silicon levels for ArF attenuated PSM lithography," Proc. SPIE 5377, Optical Microlithography XVII, (28 May 2004); https://doi.org/10.1117/12.533987