You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 May 2004Lithography-based automation in the design of program defect masks
In this work, we are reporting on a lithography-based methodology and automation in the design of Program Defect masks (PDM’s). Leading edge technology masks have ever-shrinking primary features and more pronounced model-based secondary features such as optical proximity corrections (OPC), sub-resolution assist features (SRAF’s) and phase-shifted mask (PSM) structures. In order to define defect disposition specifications for critical layers of a technology node, experience alone in deciding worst-case scenarios for the placement of program defects is necessary but may not be sufficient. MEEF calculations initiated from layout pattern data and their integration in a PDM layout flow provide a natural approach for improvements, relevance and accuracy in the placement of programmed defects. This methodology provides closed-loop feedback between layout and hard defect disposition specifications, thereby minimizing engineering test restarts, improving quality and reducing cost of high-end masks. Apart from SEMI and industry standards, best-known methods (BKM’s) in integrated lithographically-based layout methodologies and automation specific to PDM’s are scarce. The contribution of this paper lies in the implementation of Design-For-Test (DFT) principles to a synergistic interaction of CAD Layout and Aerial Image Simulator to drive layout improvements, highlight layout-to-fracture interactions and output accurate program defect placement coordinates to be used by tools in the mask shop.
The alert did not successfully save. Please try again later.
George P. Vakanas, Saghir Munir, Edita Tejnil, Daniel J. Bald, Rajesh Nagpal, "Lithography-based automation in the design of program defect masks," Proc. SPIE 5377, Optical Microlithography XVII, (28 May 2004); https://doi.org/10.1117/12.544536