You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 July 2004Replication as an alternative approach for large segmented telescopes
The next generation of optical/IR telescopes will require large numbers of co-phased mirror segments. Therefore, some form of replication technology is desirable to reduce costs. Electroforming has the advantage that it is a commercially developed technology for replication, and the technology has been widely used for making X-ray mirrors (e.g. XMM-Newton). Composite materials are appealing, since a great deal of development work has been done with composites as well. There are 3 areas that need to be addressed: replication with minimal stress so as to produce a high quality figure; attachment of support of the mirror segment so as to maintain the figure quality; thermal control requirements. Here we present a discussion of the requirements that lead us to select replication as the fabrication technology and the advantages of replication. We report on our first results of making a concave and flat mirrors.
The alert did not successfully save. Please try again later.
Melville P. Ulmer, Michael Edward Graham, Semyon Vanyman, Steven J. Varlese, Dean Baker, "Replication as an alternative approach for large segmented telescopes," Proc. SPIE 5382, Second Backaskog Workshop on Extremely Large Telescopes, (7 July 2004); https://doi.org/10.1117/12.566322