27 July 2004 A new electroactive paper actuator using conducting polypyrrole
Author Affiliations +
Abstract
The construction of electromechanical actuator has been achieved by using the conducting polypyrrole films deposition onto a gold-coated cellophane paper. This is probably the first report of this type of paper actuator. The conducting polypyrrole was electro-generated using either galvanostatic or potentiostatic conditions at 0.5 mA/cm2 current density or 0.7 volts applied potential. The two types of actuators were constructed namely: 1.Ppy/Cellophane bilayer 2. Ppy/ Cellophane paper /Ppy trilayer using electrochemical technique. These actuators showed a reversible and reproducible displacement in acetonitrile solution containing LiClO4 (1M). The maximum displacement of 9.1 mm was recorded for tri-layer device and 3.5 mm for bi-layer device in 1M LiClO4 acetonitrile solutions. The prepared actuator devices were investigated for their mechanical actuation in air medium. The actuation in air is comparatively less than in solution actuation, but still it showed significant movement in air also. The results obtained in acetonitrile solution containing 1M LiClO4 shows that the actuator requires very low excitation voltages of 0.2 MV m-1 at 0.5 Hz frequencies. The effect of humidity on the actuation properties was addressed. The humidity measurement was carried out between 60% to 95% humidity with the help of humidity-temperature controlled chamber. The resonating frequency of 3 Hz at 6 volts had shown 1.8 mm displacement at 95% humidity for gold-coated cellophane sample without polypyrrole.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shripad D. Deshpande, Shripad D. Deshpande, Jaehwan Kim, Jaehwan Kim, Seong Ryul Yun, Seong Ryul Yun, } "A new electroactive paper actuator using conducting polypyrrole", Proc. SPIE 5385, Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), (27 July 2004); doi: 10.1117/12.539623; https://doi.org/10.1117/12.539623
PROCEEDINGS
12 PAGES


SHARE
Back to Top