You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
The functional performance of ULTRAMAC PR914 positive resist on a 10:1 wafer stepper using monochromatic light at 436 nanometers was described in detail at the last SPIE Conference (March 1984). Submicron resolution capabilities in the order of 0.6 micron with edge wall profiles greater than 85° were shown, using the metal-ion-free developer, ULTRAMAC' MF62. This follow-up paper details the functional performance of ULTRAMAC' PR914 positive resist with a new metal-ion-free developer, ULTRAMAC" MF62A. When used at 1:1 dilution, ULTRAMAC' MF62A reduces the exposure energy necessary to obtain high contrast PR914 images by approximately 50% as compared to a 1:1 dilution of ULTRAMAC' MF62, making it a "fast" photoresist system by accepted industry standards. Data is shown with contact, projection and step-and-repeat alignment equipment. Also, a mechanism is proposed to explain the significant reduction in standing waves when ULTRAMAC' PR914 resist is developed with MF62 or MF62A. New data is shown on a modified version of PR914 resist, designated as ULTRAMAC" PR914 AR, for use on highly reflective surfaces, particularly over nonplanar (stepped) features. Deep UV stabilization of both ULTRAMAC' PR914 and PR914 AR, offering excellent thermal stability of critical dimensions, is also shown. Selectivity data of PR914 resist in plasma/RIE etch conditions is presented in comparison with other resists. The effect of high current ion implant (phosphorus and arsenic) on PR914 resist is also reported.
The alert did not successfully save. Please try again later.
John Grunwald, Edwin J. Turner, David A. Sawoska, Allen C. Spencer, "High Contrast Positive Resist II," Proc. SPIE 0539, Advances in Resist Technology and Processing II, (18 April 1985); https://doi.org/10.1117/12.947849