You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 August 2004Toward a chip-scale multiwavelength mode-locked semiconductor laser
We describe a chip-scale version of a multiwavelength modelocked semiconductor laser that produces discrete wavelength channels on a 25 GHz grid in the 1550 nm spectral region. The laser utilizes a two-section semiconductor optical amplifier (SOA) device in a partially external cavity which enables tuning of the laser cavity length. Since the wavelength channels are simply the longitudinal modes of the laser cavity, the channel spacing can be easily adjusted to match arbitrary wavelength division multiplexing (WDM) protocols. The hybridly modelocked semiconductor laser produces 5 ps FWHM pulses at 25 GHz pulse-repetition rate. Conversely, we demultiplex individual axial modes and employ them as continuous wave (CW) WDM sources. The modes are characterized through relative intensity noise (RIN) measurement as well as eye-diagrams of pseudorandom data imposed by an external modulator. The modelocked laser functions dually as a compact source of high speed, ultrashort pulses and as an economical source of CW WDM channels.
The alert did not successfully save. Please try again later.
Michael M. Mielke, Peter J. Delfyett Jr., "Toward a chip-scale multiwavelength mode-locked semiconductor laser," Proc. SPIE 5435, Enabling Photonic Technologies for Aerospace Applications VI, (3 August 2004); https://doi.org/10.1117/12.542639