20 August 2004 CPL reticle technology for advanced device applications
Author Affiliations +
Proceedings Volume 5446, Photomask and Next-Generation Lithography Mask Technology XI; (2004) https://doi.org/10.1117/12.557802
Event: Photomask and Next Generation Lithography Mask Technology XI, 2004, Yokohama, Japan
Each generation of semiconductor device technology drive new and interesting resolution enhancement technology (RET's). The race to smaller and smaller geometry's has forced device manufacturers to k1's approaching 0.40. The authors have been investigating the use of Chromeless phase-shifting masks (CLM) exposed with ArF, high numerical aperture (NA), and off-axis illumination (OAI) has been shown to produce production worthy sub-100nm resist patterns with acceptable overlapped process window across feature pitch. There have been a number of authors who have investigated CLM in the past but the technology has never received mainstream attention due to constraints such as wet quartz etch during mask fabrication, limited approach to optical proximity correction (OPC), and exposure tool limitations such as on-axis illumination and too low of NA. With novel binary halftone OPC and a capable modern mask making process, it has become possible to achieve global and local pattern optimization of the phase shifter for a given layout especially for patterning features with dimension at sub-half-exposure wavelength. The authors have built a number of test structures that require superior 2D control for SRAM gate structures. In this paper the authors will focus on image process integration for the 65nm node. Emphasis on pattern layout, mask fabrication and image processing will be discussed. Furthermore, the authors will discuss defect printing, inspection and repair, mask error enhancement factor (MEEF) of 2D structures coupled with phase error, layout, and mask fabrication specifications.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Willard E. Conley, Willard E. Conley, Douglas J. Van Den Broeke, Douglas J. Van Den Broeke, Robert John Socha, Robert John Socha, Wei Wu, Wei Wu, Lloyd C. Litt, Lloyd C. Litt, Kevin D. Lucas, Kevin D. Lucas, Bernard J. Roman, Bernard J. Roman, Richard D. Peters, Richard D. Peters, Colita Parker, Colita Parker, J. Fung Chen, J. Fung Chen, Kurt E. Wampler, Kurt E. Wampler, Thomas L. Laidig, Thomas L. Laidig, Erika Schaefer, Erika Schaefer, Jan-Pieter Kuijten, Jan-Pieter Kuijten, Arjan Verhappen, Arjan Verhappen, Stephan van de Goor, Stephan van de Goor, Martin Chaplin, Martin Chaplin, Bryan S. Kasprowicz, Bryan S. Kasprowicz, Christopher J. Progler, Christopher J. Progler, Emilien Robert, Emilien Robert, Philippe Thony, Philippe Thony, Michael E. Hathorn, Michael E. Hathorn, } "CPL reticle technology for advanced device applications", Proc. SPIE 5446, Photomask and Next-Generation Lithography Mask Technology XI, (20 August 2004); doi: 10.1117/12.557802; https://doi.org/10.1117/12.557802

Back to Top