12 October 2004 Space cryogenic system for SPICA mission
Author Affiliations +
Abstract
This paper describes that the feasibility of the next Japanese infrared astronomical SPICA mission is verified in thermal design by numerical analyses and developed technologies. In this advanced cryogenic mission, in order to cool the large primary mirror and focal plane instruments down to 4.5 K for 5 years or longer without cryogen, the mechanical cooling is employed with effective radiant cooling, which compensates the limited cooling capacity of the JT cryocooler for 4.5 K upgraded from that developed for the "JEM/SMILES" mission on the International Space Station. First, thermal design of the telescope is numerically discussed with thermal mathematical models. Some configurations of radiators, shields and solar-array paddles are investigated and compared in technical and mission feasibilities. Next, the development status of the 3He-JT circuit with the Stirling cryocooler for one detector operated at the lowest temperature of 1.7 K is reported. The recent results of experiments give that the breadboard model of the 1.7 K cryocooler successfully exceeds the required cooling capacity of 10mW at 1.7K with small power consumption. Finally, the heat rejection system from those cryocoolers is discussed. As a promising candidate, the loop heat pipe is chosen and suitably designed.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hiroyuki Sugita, Hiroki Nagai, Takao Nakagawa, Hiroshi Murakami, Toshio Matsumoto, Masahide Murakami, Katsuhiro Narasaki, Masayuki Hirabayashi, "Space cryogenic system for SPICA mission", Proc. SPIE 5487, Optical, Infrared, and Millimeter Space Telescopes, (12 October 2004); doi: 10.1117/12.551173; https://doi.org/10.1117/12.551173
PROCEEDINGS
9 PAGES


SHARE
KEYWORDS
Cryocoolers

Cryogenics

Space telescopes

Mirrors

Telescopes

Infrared telescopes

Optical instrument design

RELATED CONTENT

Results of the ESA internal assessment study of the European...
Proceedings of SPIE (September 03 2008)
New Entrance Shade Design For SIRTF
Proceedings of SPIE (April 27 1988)
SIRTF prototype telescope
Proceedings of SPIE (October 29 1999)

Back to Top