You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 October 2004Imaging young stellar objects with AMBER on the VLTI
Young Stellar Objects (YSOs) play a central role in the understanding
of stellar and planet formation, and progress in spatial resolution and sensitivity of long infrared interferometers made such instruments particularly well suited to probe the inner part of the disk where essential physical processes and interactions are believed to take place. The first astrophysical results obtained on
young stars arising from this technique are already giving a handful of informations about the structure of the extended component. However, model-fitting methods used to reduce the data prevent from definitive and unambiguous interpretations. Interferometric observations of Herbig Ae/Be stars is one of the most striking example. Whereas first results seemed to be in good agreement with accretion disk model, latest observations tend to favor the presence of a uniform ring with a inner radius set by dust sublimation temperature. Direct imaging of close environments around YSOs with infrared (IR) interferometers will allow to disentangle between current suggested models and to improve one step further the scenarios of stellar formation. Within this framework, we anticipate observations of YSOs with the VLTI and we investigate the potential of AMBER to recover images. Modelling their circumstellar environment, we simulate realistic observations of Herbig Ae/Be and TTauri stars. By using reconstruction technique specially dedicated
to infrared interferometry and to sparse ($u,v$) data coverage,
we analyze the quality of the recovered images, and we emphasize the critical points to take into account in the image reconstruction process. We conclude that it requires at least three nights of observations to perform imaging of YSOs with AMBER on the VLTI.
The alert did not successfully save. Please try again later.
Eric Tatulli, Eric M. Thiebaut, Fabien Malbet, Gilles Duvert, "Imaging young stellar objects with AMBER on the VLTI," Proc. SPIE 5491, New Frontiers in Stellar Interferometry, (20 October 2004); https://doi.org/10.1117/12.550496