You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 September 2004Flexible pointing models for large Arecibo-type optical telescopes
The modern day computing power to cost ratio has allowed flexible yet complex mathematical models to be implemented in various arenas. A current example is the Southern African Large Telescope and the Hobby-Eberly Telescope, Arecibo-type large optical telescopes, which have a moving prime focus confined to a spherical surface. The complexity of the moving tracking mechanism, a stationary self-aligning mirror and the scales of the structures involved in such telescopes have led to the requirement of more flexible telescope mount models. In this way the combination of low cost and a requirement for flexibility has led to the design of new mathematical models for telescopes of this type.
A case in point is the Southern African Large Telescope, due to the specific design and calibration requirements during the design and commissioning of the telescope, an adaptable mathematical model is required. Such a model should have multiple easily accessible entry points and flexibility of conversion paths between the various coordinate systems involved. In this paper the authors present an overview of the special requirements for the Southern African Large Telescope and the eventual design and implementation of a mathematical model to cope with these requirements. Some of the topics that will be discussed include: tracking challenges on SALT; layering of complexity of the mathematical model; software design and access to mathematical parameters; analytical and statistical tools for model design; and design consistency between coordinate conversions.
The alert did not successfully save. Please try again later.
Hendrik J. Schalekamp, Gerhard Swart, "Flexible pointing models for large Arecibo-type optical telescopes," Proc. SPIE 5496, Advanced Software, Control, and Communication Systems for Astronomy, (15 September 2004); https://doi.org/10.1117/12.552178