You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 October 2004Manipulation of DNA molecules using optical techniques for optically assisted DNA computing
DNA computing is an interesting computational paradigm utilizing reactive nature of DNA. The DNA computing realizes massively parallel computation because a large number of DNAs are processed in parallel. However, the computational functionality is restricted by the number of DNA molecules and DNA reactions that can be employed. As a new computational scheme, we are studying optically assisted DNA computing, which utilizes flexibility in generating light fields and parallelism of DNA reactions. Toward the goal, we experimentally verified methods for translating DNA molecules and controlling DNA reactions locally by using optical techniques. An optical manipulation method with VCSEL array sources is applied to translate DNA. We succeeded to translate two DNA clusters, which consisted of many DNA molecules attached to particles, in different directions simultaneously by switching the emission pattern of the VCSEL array. The reaction of DNA is controlled by irradiating with a laser beam. Experimental results demonstrated that double stranded DNAs, which were immobilized to the surface of a particle or a substrate, were denaturated at a resolution of several micrometer. The methods make possible to deal with a set of DNAs selectively and are useful in executing flexible operations for computing.
The alert did not successfully save. Please try again later.
Yusuke Ogura, Fumika Sumiyama, Takashi Kawakami, Jun Tanida, "Manipulation of DNA molecules using optical techniques for optically assisted DNA computing," Proc. SPIE 5515, Nanoengineering: Fabrication, Properties, Optics, and Devices, (8 October 2004); https://doi.org/10.1117/12.559241