You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 October 2004High-efficiency photoresist grating at 1.55 μm for DWDM application
Driven by the fast development in optical fiber interconnections, there exists an increasingly growing demand for wider bandwidth. DWDM technology can extremely enhance the number of wavelengths (de)multiplexed. Among many DWDM devices, free-space diffraction gratings (FSDG) play an important role, with the advantages of parallel and athermal processing as well as low polarization-dependent losses. In our work, we describe by means of the rigorous coupled-wave analysis (RCWA) that high-density holographic photoresist gratings, if being in optimized profile parameters, can realize high diffraction efficiencies, e.g., the first Bragg diffraction efficiency can theoretically achieve more than 90% both in TE and TM polarizations. And we have successfully fabricated the 600 lines/mm photoresist gratings whose first Bragg diffraction efficiency can experimentally reach 80% with the grating depth 2.9μm. The experiment process is presented in detail, and the experimental result is in good agreement with the theoretical one.
The alert did not successfully save. Please try again later.
Yanyan Zhang, Changhe Zhou, Haiyu Ru, "High-efficiency photoresist grating at 1.55 µm for DWDM application," Proc. SPIE 5523, Current Developments in Lens Design and Optical Engineering V, (14 October 2004); https://doi.org/10.1117/12.558231