25 October 2004 High output power widely tunable laser module
Author Affiliations +
Abstract
We have developed highly reliable widely tunable module, whose performances were comparable with fixed-wavelength DFB laser module. To realize wide tunability, 12 l/4-shifted DFB laser array, S-bend waveguides, MMI coupler and an SOA were integrated on a chip. We could achieve 37nm tunability by controlling each chip temperature in the range of 5 to 45°C. High output fiber coupled power of 30mW and very uniform L-I curves out of 12 DFB lasers were achieved even at 50°C. Good quality of lasing spectrum was obtained. Side mode suppression ratio (SMSR) > 45dB. The well-suppressed reflection at chip front facet contributed to the lower noise characteristics, such as RIN < -140dB/Hz and linewidth < 4MHz. The shift of locked frequency was less than 0.4GHz as the case temperature varied from -5 to 75°C. Very small frequency shift was realized by controlling the temperature of locker part, independently. By optimizing TEC design, we could achieve low TEC power consumption less than 4W under Tcase=75°C and the end of life condition of SOA current. The new function by incorporating SOA was VOA. By changing the operating SOA current, we could vary output power from 1mW to 20mW, maintaining SMSR > 40dB, RIN < -135dB/Hz, linewidth < 4MHz. We also performed optical blocking > 40dB, when SOA current was turned off. We examined modules reliability under high temperature storage of 85°C. The change of output power was < ± 10%, and the shift of locked frequency was < ± 5pm after 2000 hours.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Toshikazu Mukaihara, Tatsuro Kurobe, Tatsuya Kimoto, Tatsuyuki Shinagawa, Masayoshi Nishita, Akihiko Kasukawa, "High output power widely tunable laser module", Proc. SPIE 5595, Active and Passive Optical Components for WDM Communications IV, (25 October 2004); doi: 10.1117/12.570393; https://doi.org/10.1117/12.570393
PROCEEDINGS
7 PAGES


SHARE
RELATED CONTENT


Back to Top