You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 October 2004Segmentation algorithm for objects with very low edge contrast
We present an algorithm for segmentation of objects with very low edge contrast, such as microcalcifications in mammogram images. Most methods used to segment microcalcifications have algorithmic aspects that could raise operational difficulties, such as thresholds or windows that must be selected manually, or parametric models of the data. The presented algorithm does not use any of these techniques and does not require that any parameters be set by a user. It builds upon an earlier algorithm presented, but is much faster and also applicable to a wider range of objects to be segmented. The algorithm’s approach is based on the extension of radial intensity profiles from a given seed point to the edge of the image. A first derivative analysis is used to find an edge point pixel along each directional intensity profile. These points are connected and the resulting object border is filled using a constrained dilatation operation to form a complete region. Results from the tested mammography images indicate that the segmented regions compare closely to those expected from visual inspection.
The alert did not successfully save. Please try again later.
Stephen McCarthy, Timothy C. Miller, Isaac N. Bankman, "Segmentation algorithm for objects with very low edge contrast," Proc. SPIE 5608, Intelligent Robots and Computer Vision XXII: Algorithms, Techniques, and Active Vision, (25 October 2004); https://doi.org/10.1117/12.580136