You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 December 2004Enhancements of target detection using atmospheric correction preprocessing techniques in hyperspectral remote sensing
This paper reports the result of a study on how atmospheric correction techniques (ACT) enhance target detection in hyperspectral remote sensing, using different sets of real data. Based on the data employed in this study, it has been shown that ACT can reduce the masking effect of the atmosphere and effectively improving spectral contrast. By using the standard Kmeans cluster based unsupervised classifier, it has been shown that the accuracy of the classification obtained from the atmospheric corrected data is almost an order of magnitude better than that achieved using the radiance data. This enhancement is entirely due to the improved separability of the classes in the atmospherically corrected data. Moreover, it has been found that intrinsic information concerning the nature of the imaged surface can be retrieved from the atmospherically corrected data. This has been done to within an error of 5% by using a model based atmospheric correction package ATCOR.
The alert did not successfully save. Please try again later.
Peter W. T. Yuen, Gary J. Bishop, "Enhancements of target detection using atmospheric correction preprocessing techniques in hyperspectral remote sensing," Proc. SPIE 5613, Military Remote Sensing, (8 December 2004); https://doi.org/10.1117/12.578688