21 October 2004 Cantor fractal zone plates: numerical simulation and experimental characterization
Author Affiliations +
Proceedings Volume 5622, 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications; (2004) https://doi.org/10.1117/12.591752
Event: 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications, 2004, Porlamar, Venezuela
Abstract
We study experimentally and by numerical simulation the Fresnel diffraction on the recently introduced fractal zone plates (ZPs) associated with Cantor sets. The focusing properties of these ZPs and the evolution of the intensity patterns at the plane transversal to the propagation direction are discussed. As it follows from numerical simulation the series of conventional and doughnut-like secondary focuses are observed around the principal focus. The position, depth and the size of these focuses depends on the type of Cantor set and the level of the fractal, which are directly related to the number of the corresponding Fresnel zones. The results obtained by numerical simulations are verified in the experiments. The fractal Cantor ZPs of different levels are implemented with a liquid crystal display and with the diapositives. The experimental results obtained by both types of the dispositives are in good agreement with the theory and numerical simulations.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
J. A. Rodrigo, Tatiana Alieva, Maria L. Calvo, Jeffrey A. Davis, L. Ramirez, "Cantor fractal zone plates: numerical simulation and experimental characterization", Proc. SPIE 5622, 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications, (21 October 2004); doi: 10.1117/12.591752; https://doi.org/10.1117/12.591752
PROCEEDINGS
4 PAGES


SHARE
Back to Top