Translator Disclaimer
18 January 2005 Compact whole-body fluorescent imaging of nude mice bearing EGFP expressing tumor
Author Affiliations +
Abstract
Issue of tumor has been a hotspot of current medicine. It is important for tumor research to detect tumors bearing in animal models easily, fast, repetitively and noninvasivly. Many researchers have paid their increasing interests on the detecting. Some contrast agents, such as green fluorescent protein (GFP) and Discosoma red fluorescent protein (Dsred) were applied to enhance image quality. Three main kinds of imaging scheme were adopted to visualize fluorescent protein expressing tumors in vivo. These schemes based on fluorescence stereo microscope, cooled charge-coupled-device (CCD) or camera as imaging set, and laser or mercury lamp as excitation light source. Fluorescence stereo microscope, laser and cooled CCD are expensive to many institutes. The authors set up an inexpensive compact whole-body fluorescent imaging tool, which consisted of a Kodak digital camera (model DC290), fluorescence filters(B and G2;HB Optical, Shenyang, Liaoning, P.R. China) and a mercury 50-W lamp power supply (U-LH50HG;Olympus Optical, Japan) as excitation light source. The EGFP was excited directly by mercury lamp with D455/70 nm band-pass filter and fluorescence was recorded by digital camera with 520nm long-pass filter. By this easy operation tool, the authors imaged, in real time, fluorescent tumors growing in live mice. The imaging system is external and noninvasive. For half a year our experiments suggested the imaging scheme was feasible. Whole-body fluorescence optical imaging for fluorescent expressing tumors in nude mouse is an ideal tool for antitumor, antimetastatic, and antiangiogenesis drug screening.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yanping Chen, Tao Xiong, Jun Chu, Li Yu, Shaoqun Zeng, and Qingming Luo "Compact whole-body fluorescent imaging of nude mice bearing EGFP expressing tumor", Proc. SPIE 5630, Optics in Health Care and Biomedical Optics: Diagnostics and Treatment II, (18 January 2005); https://doi.org/10.1117/12.580663
PROCEEDINGS
6 PAGES


SHARE
Advertisement
Advertisement
Back to Top