You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 December 2004An adaptive wavefront control system using a high-resolution liquid crystal spatial light modulator
We have developed a tabletop adaptive optics wavefront control system used to correct dynamic distortions. The system uses a Shack-Hartmann sensor constructed by using a lenslet array and a high-speed CMOS camera to measure distortion, a high-resolution liquid crystal spatial light modulator to correct distortion, and a personal computer to execute feedback control. A correction refresh rate of 50 cycles per second was achieved as the result of the high-speed vision system. The temporal characteristic measurement was based on the response to periodic signals of patterns, and the measured bandwidth was about 7Hz. We also describe the optical configuration and experimental results of a performance evaluation.
The alert did not successfully save. Please try again later.
Hongxin Huang, Takashi Inoue, Tsutomu Hara, "An adaptive wavefront control system using a high-resolution liquid crystal spatial light modulator," Proc. SPIE 5639, Adaptive Optics and Applications III, (23 December 2004); https://doi.org/10.1117/12.576491