28 February 2005 Toward self-tuning adaptive vibration-based microgenerators
Author Affiliations +
The rapidly decreasing size, cost, and power consumption of wireless sensors has opened up the relatively new research field of energy harvesting. Recent years have seen an increasing amount of research on using ambient vibrations as a power source. An important feature of all of these generators is that they depend on the resonance frequency of the generator device being matched with the frequency of the input vibrations. The goal of this paper, therefore, is to explore solutions to the problem of self-tuning vibration based energy harvesters. A distinction is made between “active” tuning actuators that must continuously supply power to achieve the resonance frequency change, and “passive” tuning actuators that supply power initially to tune the frequency, and then are able to “turn off” while maintaining the new resonance frequency. This paper analyzes the feasibility of tuning the resonance frequency of vibration based generators with “active” tuning actuators. Actuators that can tune the effective stiffness, mass, and damping are analyzed theoretically. Numerical results based for each type of actuator are presented. It is shown that only actuators that tune the effective damping will result in a net increase in power output, and only under the circumstance that no actuation power is needed to add damping. The net increase in power occurs when the mismatch between driving vibrations the mismatch between driving vibrations the resonance frequency of the device is more than 5%. Finally, the theory and numerical results are validated by experiments done on a piezoelectric generator with a smart material “active” tuning actuator.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shad Roundy, Shad Roundy, Yang Zhang, Yang Zhang, } "Toward self-tuning adaptive vibration-based microgenerators", Proc. SPIE 5649, Smart Structures, Devices, and Systems II, (28 February 2005); doi: 10.1117/12.581887; https://doi.org/10.1117/12.581887

Back to Top