You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 January 2005Study of hyperspectral IR atmospheric sounding with an accurate forward model
With a fast yet accurate infrared radiation transfer model KCARTA, transmittance, radiance and brightness temperature spectra of top of atmosphere (TOA) over thermal infrared region (605-2805cm-1) was simulated. In simulation, the effects of different spectral resolution, response function shape, spectral calibration accuracy, propagation path and surface emissivity were taken into account. The results from forward calculations show: 1) Improvement of spectral resolution changes the probability of present brightness temperature so that more brightness temperature can be observed. Increased observed brightness temperature guarantee atmospheric sounding with better vertical resolution. 2) A small change in response function, spectral calibration, propagation path or surface emissivity will lead in much larger difference on observed brightness temperature for hyperspectral sounding than for low spectral resolution sounding. Therefore, hyperspectral sensor requires more sensitive SNR. Otherwise, the improvement of sounding will be limited. Results here can be taken as a reference in designing future hyperspectral IR sounder and retrieval algorithm.
The alert did not successfully save. Please try again later.
Peng Zhang, Pascal Brunel, Chaohua Dong, Deming Jiang, "Study of hyperspectral IR atmospheric sounding with an accurate forward model," Proc. SPIE 5655, Multispectral and Hyperspectral Remote Sensing Instruments and Applications II, (20 January 2005); https://doi.org/10.1117/12.573056