11 March 2005 Signal recovery from random projections
Author Affiliations +
Can we recover a signal f∈RN from a small number of linear measurements? A series of recent papers developed a collection of results showing that it is surprisingly possible to reconstruct certain types of signals accurately from limited measurements. In a nutshell, suppose that f is compressible in the sense that it is well-approximated by a linear combination of M vectors taken from a known basis Ψ. Then not knowing anything in advance about the signal, f can (very nearly) be recovered from about M log N generic nonadaptive measurements only. The recovery procedure is concrete and consists in solving a simple convex optimization program. In this paper, we show that these ideas are of practical significance. Inspired by theoretical developments, we propose a series of practical recovery procedures and test them on a series of signals and images which are known to be well approximated in wavelet bases. We demonstrate that it is empirically possible to recover an object from about 3M-5M projections onto generically chosen vectors with an accuracy which is as good as that obtained by the ideal M-term wavelet approximation. We briefly discuss possible implications in the areas of data compression and medical imaging.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Emmanuel J. Candes, Emmanuel J. Candes, Justin K. Romberg, Justin K. Romberg, } "Signal recovery from random projections", Proc. SPIE 5674, Computational Imaging III, (11 March 2005); doi: 10.1117/12.600722; https://doi.org/10.1117/12.600722


Poisson noise removal with pyramidal multi-scale transforms
Proceedings of SPIE (September 25 2013)
Hybrid image encoding based on wavelet transform and DPCM
Proceedings of SPIE (September 24 1998)
Multilayered image compression
Proceedings of SPIE (October 18 1998)
Integrated wavelets for medical image analysis
Proceedings of SPIE (November 12 2003)
Steering wheel angle filtering based on wavelet transform
Proceedings of SPIE (October 28 2011)

Back to Top