13 April 2005 Control of the spin-polarization of photoelectrons/photoions using short laser pulses (Invited Paper)
Author Affiliations +
Abstract
We present a scheme to control the spin-polarization of photoelectrons/photoions using short laser pulses. It is based on the pump-probe method. By exciting fine structure manifolds of a system by the short pump pulse with a sufficient bandwidth, a superposition of fine structure states is created. After the pump pulse, the coherently superposed excited state evolves in time under the field-free condition with a period determined by the inverse of energy difference between them. In terms of the spin state, this suggests that the different spin state evolves differently in time, leading to the time-varying spin-polarization. Therefore, varying the time delay between the pump and probe pulses leads to the control of spin states upon photoionization. Specific theoretical results are presented for two-valence-electron atoms, in particular for Mg, which demonstrate that, under certain conditions, not only the degree of spin-polarization but also its polarity can be manipulated through time delay. Furthermore, we propose a new technique to accelerate the coupling time by the introduction of a dressing laser with a few ns duration. Since the underline physics is rather general and transparent, the presented scheme may be potentially applied to nanostructures such as quantum wells and quantum dots.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Takashi Nakajima, Takashi Nakajima, } "Control of the spin-polarization of photoelectrons/photoions using short laser pulses (Invited Paper)", Proc. SPIE 5725, Ultrafast Phenomena in Semiconductors and Nanostructure Materials IX, (13 April 2005); doi: 10.1117/12.584209; https://doi.org/10.1117/12.584209
PROCEEDINGS
11 PAGES


SHARE
RELATED CONTENT


Back to Top