Translator Disclaimer
14 March 2005 The orbital angular momentum of photons in noncollinear spontaneous parametric downconversion
Author Affiliations +
We elucidate the paraxial orbital angular momentum of entangled photon pairs generated by spontaneous parametric down-conversion (SPDC) in different non-collinear geometries. To date, most investigations addressed SPDC in nearly collinear phase-matching geometries, where the pump, the signal and idler photons propagate coaxially almost along the same direction. However, non-collinear geometries introduce a variety of new features. The OAM of the entangled photons strongly depend on the propagation direction of the photons. Here we show that locally paraxial measurements of the OAM conducted with entangled photons generated in non collinear geometries, they do not comply with the known selection rules for the spiral index of the pump, signal and idler mode functions (Mair et al., Nature 412, 313 (2001)). In particular, we find the orbital angular momentum of entangled pairs generated in purely transverse-emitting configurations, where the entangled photons counter-propagate perpendicularly to the direction of propagation of the pump beam. In transverse emitting configurations, the spatial shape of the down converted in one transverse dimensions strongly depends on the corresponding spatial shape of the input pump beam, while in the other transverse dimension, the shape is tailored by the longitudinal phase matching. The spatial walk-off of all interacting waves in the parametric process also determines the OAM content of the down-converted photons, and here its influence is also revealed.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Juan P. Torres, Clara I. Osorio, Gabriel Molina-Terriza, and Lluis Torner "The orbital angular momentum of photons in noncollinear spontaneous parametric downconversion", Proc. SPIE 5736, Nanomanipulation with Light, (14 March 2005); doi: 10.1117/12.589664;

Back to Top