Paper
1 April 2005 Bus-coupled microresonator lasers
Author Affiliations +
Abstract
Microresonators are of considerable interest in wavelength division multiplexing (WDM) applications due to their small feature size and versatile functionality. When combined with other high-Q passive and active elements connected through a common bus line, microresonator lasers will enable the fabrication of sophisticated photonic integrated circuits (PICs) that take full advantage of compact chip layouts. Circular microresonator lasers are attractive sources for PICs because of their cleavage-free cavity and excellent wavelength selectivity. We have demonstrated an InP/InGaAsP microdisk resonator laser, where a high-Q microdisk lasing mode is vertically coupled out through a straight bus waveguide. The vertically coupled design is realized by using wafer-boding techniques. By connecting multiple microdisk lasers through a common output bus line, we have demonstrated an 8-channel laser arrays with 1.6 nm (200 GHz) spectral channel spacing. The channel spacing is achieved by varying the disk resonator radii from 10.6 to 10.95 mm. Typical threshold current of ~ 7 mA is observed under CW lasing operation near 1510 nm. In this presentation we will discuss the operating characteristics of microresonator lasers and the use of resonators in laser cavities as wavelength selection and stabilization elements.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Seung-June Choi, Zhen Peng, Qi Yang, Sang Jun Choi, and P. Daniel Dapkus "Bus-coupled microresonator lasers", Proc. SPIE 5738, Novel In-Plane Semiconductor Lasers IV, (1 April 2005); https://doi.org/10.1117/12.590836
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Waveguides

Resonators

Microresonators

Photonic integrated circuits

Continuous wave operation

Laser resonators

Semiconductors

Back to Top