You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 April 2005Dual-energy digital mammography for calcification imaging: improvement by post-image processing
Overlapping fibroglandular tissue structures may obscure small calcifications, essential to the early detection of breast cancer. Dual-energy digital mammography (DEDM), where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize calcifications amidst fibroglandular structures. We have developed and implemented a DEDM technique under full-field imaging conditions using a commercially available flat-panel based digital mammography system. We have developed techniques to suppress residual structures due to scatter contamination and non-uniformity in the x-ray field and detector response in our DEDM implementation. The total mean-glandular dose from the low- and high-energy images was constrained to be similar to screening examination levels. The low- and high-energy images were combined using a calibrated nonlinear (cubic) mapping function to generate the calcification images. To evaluate the dual-energy calcification images, we have designed a special phantom with calcium carbonate crystals to simulate calcifications of different sizes superimposed with a 5 cm thick breast-tissue-equivalent material with a continuously varying glandular-tissue ratio from 0.0 to 1.0. The suppression of tissue-structure background by dual-energy imaging comes with the cost of increased noise in the dual-energy images. We report on the effects of different image processing techniques on the dual-energy image signal and noise levels. The effects of image processing on the calcification contrast-to-noise ratios are also presented.
The alert did not successfully save. Please try again later.
S. Cheeenu Kappadath, Chris C. Shaw, Chao-Jen Lai, Xinming Liu, Gary J. Whitman M.D., Wei T. Yang, "Dual-energy digital mammography for calcification imaging: improvement by post-image processing," Proc. SPIE 5745, Medical Imaging 2005: Physics of Medical Imaging, (20 April 2005); https://doi.org/10.1117/12.596903