You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 April 2005Evaluation of an optically coupled CCD digital radiography system
A digital radiography system comprised of a large field of view (43x43cm) high luminance CsI scintillator, optically coupled to a 4096x4096 element CCD sensor with 12:1 demagnification was evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). Detector evaluation was performed using IEC standard #62220-1 methodologies for beam quality. In this study, RQA-5 (21 mm Al added filtration, 74 kVp, 7.1 mm half value layer (HVL)) and RQA-9 (40 mm Al added filtration, 119 kVp, 11.5 mm HVL) qualities were used at several incident exposures from <0.1 mR to >50 mR. Two detector modes of operation included high resolution (HR) and high efficiency (HE), with 108 and 216 μm pixel dimensions, respectively. The detector system responded to 60 mR incident exposure prior to saturation for the HR mode and up to 30 mR in the HE mode. The pre-sampled MTF(f) had 50% modulation at 0.95 mm-1 (HR) and 0.85 mm-1 (HE); and 10%MTF(f) was reached at 2.4 mm-1 (HR) and 2.0 mm-1 (HE). At a frequency of 0.5 mm-1, the DQE was 40% to 50%, and at 1 mm-1 was 12% to 20% for HR and HE modes, respectively. The DQE at low exposures was substantially better for the HE mode. Little dependence of the DQE on beam energy was found, but the RQA 9 beam had lower values. Above a frequency of 2 mm-1 the DQE dropped to zero, attributed to low MTF. Results suggest that patient radiation exposures equivalent or better than a conventional 400 speed screen-film detector can be achieved for many imaging procedures with sufficient SNR and spatial resolution required for a wide range of diagnostic radiography applications.
The alert did not successfully save. Please try again later.
J. Anthony Seibert, Alexander Kwan, John M. Boone, Paul Brown, Robin Winsor, "Evaluation of an optically coupled CCD digital radiography system," Proc. SPIE 5745, Medical Imaging 2005: Physics of Medical Imaging, (20 April 2005); https://doi.org/10.1117/12.595751