You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 April 2005On the adequacy of principal factor analysis for the study of shape variability
The analysis of shape variability of anatomical structures is of key importance in a number of clinical disciplines, as abnormality in shape can be related to certain diseases. Statistical shape analysis techniques commonly employed in the medical imaging community, such as Active Shape Models or Active Appearance Models rely on Principal Component Analysis (PCA) to decompose shape variability into a reduced set of interpretable components. In this paper we propose Principal Factor Analysis (PFA) as an alternative to PCA and argue that PFA is a better suited technique for medical imaging applications. PFA provides a decomposition into modes of variation that are more easily interpretable, while still being a linear, efficient technique that performs dimensionality reduction (as opposed to Independent Component Analysis, ICA). Both PCA and PFA are described. Examples are provided for 2D landmark data of corpora callosa outlines, as well as vector-valued 3D deformation fields resulting from non-rigid registration of ventricles in MRI. The results show that PFA is a more descriptive tool for shape analysis, at a small cost in size (as in theory more components may be necessary to explain a given percentage of total variance in the data). In conclusion, we argue that it is important to study the potential of factor analysis techniques other than PCA for the application of shape analysis, and defend PFA as a good alternative.
The alert did not successfully save. Please try again later.
Miguel Angel Gonzalez Ballester, Marius George Linguraru, Mauricio Reyes Aguirre, Nicholas Ayache, "On the adequacy of principal factor analysis for the study of shape variability," Proc. SPIE 5747, Medical Imaging 2005: Image Processing, (29 April 2005); https://doi.org/10.1117/12.593333