You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 April 2005A theoretical investigation of several methods for combining multiple diagnostic assessments
Acquiring multiple images of the same patient (e.g., mediolateral oblique and craniocaudal view mammograms) can, in principle, help improve diagnostic accuracy. We investigated theoretically, in the context of computer-aided diagnosis (CAD), four methods of combining multiple computer outputs obtained from multiple images of the same patient: taking the average, the median, the maximum, or the minimum of the individual assessments. We assumed that multiple computer outputs for each patient are equally accurate and that they can be transformed monotonically to the same pair of truth conditional normal distributions. We found that both the average and the median always produce improved area under the ROC curve (AUC) compared to single-view images, and that the average always performs better than the median. Furthermore, the maximum and the minimum can also produce improved AUCs and can outperform the average under certain situations, but in other situations they can produce worse results than single-view images. Moreover, except for the median, each method can be the best-performing method under specific conditions. Finally, as the strength of correlation between image pairs increases, the maximum and the minimum tend to perform the best more often whereas the average is less often the best performer.
Bei Liu,Charles E. Metz, andYulei Jiang
"A theoretical investigation of several methods for combining multiple diagnostic assessments", Proc. SPIE 5749, Medical Imaging 2005: Image Perception, Observer Performance, and Technology Assessment, (6 April 2005); https://doi.org/10.1117/12.595826
The alert did not successfully save. Please try again later.
Bei Liu, Charles E. Metz, Yulei Jiang, "A theoretical investigation of several methods for combining multiple diagnostic assessments," Proc. SPIE 5749, Medical Imaging 2005: Image Perception, Observer Performance, and Technology Assessment, (6 April 2005); https://doi.org/10.1117/12.595826