You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 May 2005Active motion artifact cancellation for wearable health monitoring sensors using collocated MEMS accelerometers
This paper presents an active noise cancellation technique for recovering wearable biosensor signals corrupted by bodily motion. A finger mounted photoplethysmograph (PPG) ring sensor with a collocated MEMS accelerometer is considered. The system by which finger acceleration disturbs PPG output is identified and a means of modeling this relationship is prescribed using either FIR or Laguerre models. This means of modeling motivates the use of a recursive least squares active noise cancellation technique using the MEMS accelerometer reading as an input for a FIR or Laguerre model. The model parameters are identified and tuned in real time to minimize the power of the recovered PPG signal. Experiments show that the active noise cancellation method can recover pulse information from PPG signals corrupted with up to 2G of acceleration with 85% improvement in mean squared error.
Peter T. Gibbs,Levi B. Wood, andH. Harry Asada
"Active motion artifact cancellation for wearable health monitoring sensors using collocated MEMS accelerometers", Proc. SPIE 5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (17 May 2005); https://doi.org/10.1117/12.600781
The alert did not successfully save. Please try again later.
Peter T. Gibbs, Levi B. Wood, H. Harry Asada, "Active motion artifact cancellation for wearable health monitoring sensors using collocated MEMS accelerometers," Proc. SPIE 5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (17 May 2005); https://doi.org/10.1117/12.600781