20 May 2005 Detection of vehicle-based improvised explosives using ultra-trace detection equipment
Author Affiliations +
Abstract
Vehicle-borne improvised explosive devices (VBIEDs) have become the weapon of choice for insurgents in Iraq. At the same time, these devices are becoming increasingly sophisticated and effective. VBIEDs can be difficult to detect during visual inspection of vehicles. This is especially true when explosives have been hidden behind a vehicle’s panels, inside seat cushions, under floorboards, or behind cargo. Even though the explosive may not be visible, vapors of explosive emanating from the device are often present in the vehicle, but the current generation of trace detection equipment has not been sensitive enough to detect these low concentrations of vapor. This paper presents initial test results using the Nomadics Fido sensor for detection of VBIEDs. The sensor is a small, explosives detector with unprecedented levels of sensitivity for detection of nitroaromatic explosives. Fido utilizes fluorescence quenching of novel polymer materials to detect traces of explosive vapor emanating from targets containing explosives. These materials, developed by collaborators at the Massachusetts Institute of Technology (MIT), amplify the quenching response that occurs when molecules of explosive bind to films of the polymer. These materials have enabled development of sensors with performance approaching that of canines trained to detect explosives. The ability of the sensor to detect explosives in vehicles and on persons who have recently been in close proximity to explosives has recently been demonstrated. In these tests, simulated targets were quickly and easily detected using a Fido sensor in conjunction with both direct vapor and swipe sampling methods. The results of these tests suggest that chemical vapor sensing has utility as a means of screening vehicles for explosives at checkpoints and on patrols.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mark Fisher, John Sikes, Mark Prather, Clint Wichert, "Detection of vehicle-based improvised explosives using ultra-trace detection equipment", Proc. SPIE 5778, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, (20 May 2005); doi: 10.1117/12.606668; http://dx.doi.org/10.1117/12.606668
PROCEEDINGS
10 PAGES


SHARE
KEYWORDS
Explosives

Sensors

Improvised explosive devices

Contamination

Explosives detection

Polymers

Statistical analysis

Back to Top