Paper
1 June 2005 A portable vapor cell for passive FT-IR spectrometer evaluation
Author Affiliations +
Abstract
Gravimetrically prepared aqueous binary solutions permit the generation of target vapors of methanol and ammonia in a portable vapor cell. A passive Fourier transform infrared (FT-IR) spectrometer monitors a short pathlength optical cell using a calibrated extended-blackbody background source. The temperature of the blackbody ranges from 5°C to 50°C in five degree increments. This temperature range simulates the radiance levels most often encountered for ambient temperature backgrounds in open-air field measurements. The solute liquid mole fractions determine the resultant vapor concentrations. The water component attenuates the target vapor concentration from that of the pure solute component depending on the solute liquid mole fraction. This study demonstrates the utility of a portable vapor cell using a series of binary aqueous solutions per target compound over the Beer’s Law range of infrared absorbances. These Beer’s Law infrared absorbances and blackbody radiance levels are within the linearity range of the passive FT-IR spectrometer and are representative of open-air field conditions.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Roger J. Combs, Alan S. Cummings, Mark J. Thomas, and Robert T. Kroutil "A portable vapor cell for passive FT-IR spectrometer evaluation", Proc. SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, (1 June 2005); https://doi.org/10.1117/12.605272
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Absorbance

Spectroscopy

FT-IR spectroscopy

Black bodies

Infrared spectroscopy

Binary data

Signal to noise ratio

Back to Top