You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 May 2005Unified robust-Bayes multisource ambiguous data rule fusion
The ambiguousness of human information sources and of a PRIORI human context would seem to automatically preclude the feasibility of a Bayesian approach to information fusion. We show that this is not necessarily the case, and that one can model the ambiguities associated with defining a "state" or "states of interest" of an entity. We show likewise that we can model information such as natural-language statements, and hedge against the uncertainties associated with the modeling process. Likewise a likelihood can be created that hedges against the inherent uncertainties in information generation and collection including the uncertainties created by the passage of time between information collections. As with the processing of conventional sensor information, we use the Bayes filter to produce posterior distributions from which we could extract estimates not only of the states, but also estimates of the reliability of those state-estimates. Results of testing this novel Bayes-filter information-fusion approach against simulated data are presented.
The alert did not successfully save. Please try again later.
A. El-Fallah, A. Zatezalo, R. Mahler, R. K. Mehra, "Unified robust-Bayes multisource ambiguous data rule fusion," Proc. SPIE 5809, Signal Processing, Sensor Fusion, and Target Recognition XIV, (25 May 2005); https://doi.org/10.1117/12.605466