Translator Disclaimer
2 June 2005 Analysis of beam steering tolerances and divergence for various long range FSO communication links
Author Affiliations +
Abstract
Through the use of recent technological developments, it is now feasible to establish free-space optical (FSO) communication links over ultra-long distances. Recent research has shown that FSO systems could be deployed to establish high-rate data links to deep space. This study analyzes beam steering tolerances, beam divergence, and geometric loss for different distance ranges of interest for FSO communication links based on a mechanical gimbaled beam steering mechanism. The tolerance, divergence and geometric loss calculations are performed to evaluate the feasibility of establishing FSO links between the Earth and satellites, the Earth and aircraft, aircraft and satellites, the Earth and moon, the Earth and Mars, and the Earth and the edge of the solar system. The analysis and calculations performed take into consideration the availability of new technology such as low noise photon-counting detectors and fiber lasers and amplifiers. The beam steering tolerance and divergence calculations provide beneficial information for determining the extent to which future FSO systems could be deployed for both commercial, military and space exploration applications. Recommendations on the suitability of an FSO communication link for various applications are then made based on the beam steering tolerance and divergence calculations.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alan Harris, James J. Sluss Jr., Hazem H. Refai, and Peter G. LoPresti "Analysis of beam steering tolerances and divergence for various long range FSO communication links", Proc. SPIE 5819, Digital Wireless Communications VII and Space Communication Technologies, (2 June 2005); https://doi.org/10.1117/12.602503
PROCEEDINGS
8 PAGES


SHARE
Advertisement
Advertisement
Back to Top