2 June 2005 Application-specific routing scheme for indoor wireless localization systems
Author Affiliations +
Abstract
The proposed research focuses on the communication in an RF-based indoor wireless localization system. In such a system, wireless badges attached to people or devices report positions to wireless gateway units. Badges have very limited communication, energy, as well as processing capabilities. However, gateways are significantly less constrained by battery than the badges. Wireless gateway units route collected badge information hop-by-hop towards one central unit of the system. We assume that each gateway unit has one transceiver antenna and is able to determine its own relative position in the system. The goal of this research is to develop an application-specific scheme for information routing and topology control among gateway units with maximum reliability, flexibility, adaptability and acceptable latency. We implemented two protocols (a robust one and a traffic-aware one), however, we shall show that for large networks, the use of multiple routing algorithms is beneficial. We assume that the topology control is fully centralized and the central unit is responsible for network management. We simulated the feasibility of the proposed novel two-protocol routing scheme and compared this scheme to a well-known dynamic source routing scheme. We demonstrated noticeable improvements in terms of robustness, traffic-awareness, and throughput. We also showed that the use of multiple protocols in our application-specific wireless indoor localization system will enhance the overall system performance.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Tamas Kasza, Tamas Kasza, Chang W. Chen, Chang W. Chen, } "Application-specific routing scheme for indoor wireless localization systems", Proc. SPIE 5819, Digital Wireless Communications VII and Space Communication Technologies, (2 June 2005); doi: 10.1117/12.606706; https://doi.org/10.1117/12.606706
PROCEEDINGS
12 PAGES


SHARE
Back to Top