You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 June 2005Holographic optical elements for Bragg image processing
In this work we analyse the very specific properties offered by volume holography when applied to image processing with no Fourier plane. Bragg diffraction, exhibited by holographic optical elements (HOEs), modifies the impulse response of an imaging system, facilitating spatial filtering operations with no need for a physical Fourier plane (Bragg processing). We show both experimental and simulated results with holographic phase gratings and with holographic lenses generated on a polyvinyl alcohol/acrylamide (PVA/AA) photopolymer. We determine which are the significant parameters to model the performance of the HOEs for Bragg filtering: orientation and bandwidth of the passband of the filter. We relate these spatial filtering parameters with their corresponding counterparts in volume holography. We also show how the local variation of these parameters is responsible for space-variance properties of the HOE when applied in Bragg processing. We have also analysed the impulse response characteristics of the Bragg filter together with the effects of the limited aperture of the imaging system.
The alert did not successfully save. Please try again later.
A. Marquez, Cristian Neipp, Sergi Gallego, M. Ortuno, A. Belendez, I. Pascual, "Holographic optical elements for Bragg image processing," Proc. SPIE 5827, Opto-Ireland 2005: Photonic Engineering, (8 June 2005); https://doi.org/10.1117/12.605233