29 June 2005 A bioinspired collision detection algorithm for VLSI implementation
Author Affiliations +
Abstract
In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
J. Cuadri, J. Cuadri, G. Linan, G. Linan, R. Stafford, R. Stafford, M. S. Keil, M. S. Keil, E. Roca, E. Roca, } "A bioinspired collision detection algorithm for VLSI implementation", Proc. SPIE 5839, Bioengineered and Bioinspired Systems II, (29 June 2005); doi: 10.1117/12.607837; https://doi.org/10.1117/12.607837
PROCEEDINGS
11 PAGES


SHARE
RELATED CONTENT

Vehicle classification in video using virtual detection lines
Proceedings of SPIE (December 24 2013)
New modulation-based watermarking technique for video
Proceedings of SPIE (February 16 2006)
Video analysis for smart rooms
Proceedings of SPIE (July 20 2001)
Edge degradation for objective video quality metrics
Proceedings of SPIE (January 18 2004)

Back to Top