You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 May 2005Tailoring of nano-structures doped with optically active rare earth ions for single atom spectroscopy (Invited Paper)
Pulsed Laser Chemical Vapor Deposition (PLCVD) has been used to fabricate single atoms doped nanoparticles of magnesium sulfide. These particles were dispersed in optically transparent Poly-methyl-methacrylate (PMMA) films for near field nano-microscopy such that each nanoparticle doped with a single europium atom falls in the focusing range of the near field microscope. By atomic tailoring, the concentration of the doubly ionized europium, Eu2+, has been maximized in these nanoparticles. The energy and the oscillator strength of the 4f7-4f65d1 electronic transition has been tailored to maximize its addressing by photons in single atom spectroscopy experiments. Results have been presented on the fabrication of these single atom doped nanoparticles and their spectroscopy by laser excited fluorescence technique. Studies of a single Eu2+ ion by confocal micro-spectroscopy are in progress.
The alert did not successfully save. Please try again later.
Zameer Hasan, Adam Adamczyk, Aras Konjhodzic, Mohamed Aly, Francisco Bezares, "Tailoring of nano-structures doped with optically active rare earth ions for single atom spectroscopy," Proc. SPIE 5842, Fluctuations and Noise in Photonics and Quantum Optics III, (23 May 2005); https://doi.org/10.1117/12.611184